H-1163

Total No. of Printed Pages:2

SUBJECT CODE NO:- H-1163 FACULTY OF SCIENCE AND TECHNOLOGY S.Y. B.Tech. (ETC) CBC & Grading System (Sem-IV) Electromagnetic Engineering [Revised]

[Revised] [Time: Two Hours] [Max. Marks: 40] Please check whether you have got the right question paper. N.B 1. Q.1 and Q.6 are compulsory. 2. Solve any two questions from reaming from each section separated. Section A Q.1 Solve any two 06 a) Compare dot product with cross products. b) Derive relation between $\bar{E} \& \bar{D}$. c) State and prove Gauss's law. Converts A (2,3,-2) is to spherical coordinates and $\beta(8, 25^{\circ}, \phi = 140^{\circ})$ into Cartesian 07 Q.2 coordinates. Find D is the region about a inform line charge of 8n c\m lying along the Z axis is free space if Q.3 07 r=3m. Determine whether or not the following potential fields satisfy the Laplace's equations. Q.4 07 $V = x^2 - v^2 + Z^2$. i) $V = r \cos \phi + Z$ ii) $V = r \cos \theta + \Phi$ Derive Boundary conditions between conductor and free space. 07 Q.5 Section - B Solve any three. Q.6 06 State Biot – savart law i) Write Maxwell's equation is free space. ii) Define uniform plane wave & phase velocity. iii) State Faraday's law and Lenz's law iv) Q.7 Evaluate both side of stoke's theorem for the field $\overline{H} = 6xy \, \widehat{\alpha} x - 3y^2 \, \widehat{\alpha} y \, A/m$ and the 07 rectangular path along the region $2 \le x \le 5$, $-1 \le y \le 1$, Z = 0 let the positive direction of ds

be \widehat{az} .

Examination Nov/Dec 2019

		H-116
Q.8	If Ey= $10.4e^{j(2\pi \times 10^9 t - \beta x)} \mu V/M$ in free space find. i) Phase velocity (V) ii) Phase constant (B) iii) Angular velocity (w) iv) Hm by property	07
Q.9	Explain Maxwell's equation is Harmonically varying field?	07
Q.10	State and prove stoke's theorem?	07