H-125

Total No. of Printed Pages:2

SUBJECT CODE NO:- H-125 FACULTY OF SCINECE AND TECHNOLOGY

T.E. (EC/ECT/E&C) (Sem-II)
Signal Coding & Estimation Theory
[OLD]

[Time: Three Hours] [Max.Marks:80]

N.B

Please check whether you have got the right question paper.

- 1. Q .no. 1 and Q.no.6 are compulsory
- 2. Solve any two questions from in each section
- 3. Assume suitable additional data if necessary.

Section -A

Q.1 Solve any two

10

07

- i) Explain Mutual information with its properties.
- ii) Explain binary erasure channel.
- iii) Explain source coding Theorem.

Q.2

- a) What do you mean by channel capacity? State & explain channel capacity theorem.
 - ollowing message ensamble 08

b) Apply Shannon fano coding for following message ensamble
$$[X] = [x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7]$$
$$[P] = [0.45 \ 0.15 \ 0.1 \ 0.1 \ 0.08 \ 0.08 \ 0.04]$$

Q.3

a) Explain channel capacity of BSC

07

08

b) Find capacity of following channel whose channel matrix is

 $P(Y/X) = \begin{bmatrix} P & 1-P \\ 1-P & P \end{bmatrix}$

- i) Draw channel diagram.
- ii) If sources are equally likely find probabilities of output if p=0.8
- iii) Find capacity of the channel for P=0.8

Q.4

a) Prove the following relationship

07

08

$$A(X,Y) = H(X) - H(X/Y)$$

ic

b) The Generator matrix for a (6,3) block code is given below. Find all code vectors of this code

$$G\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

1

Examination Nov/Dec 2019

		H-12
Q.5	a) Find out channel capacity of Binary erasure channel.	07
	b) Explain Run length coding.	08
	Section – B	
Q.6	Solve any two (short notes) i) Maximum likely hood estimation ii) Encoder ckt for LBC iii) Transform domain approach	10
Q.7	a) For a (7,4) cyclic code find out the generator matrix if $G(D)=1+D+D^3$	07
	b) Explain syndrome decoding of LBC.	08
Q.8	a) Explain procedure to obtain CRC.	07
	b) Explain matrix description of convolution codes.	08
Q.9	a) Construct the (7,4) linear code word for the generator polynomial $G(D) = 1 + D^2 + D^3$ for the message bits 1001	07
	b) Using generator polynomial $g(x) = 1 + x^2 + x^3$ generate the systematic & nonsystematic cyclic code words for the message vector 1011	08
Q.10	a) Explain i) Tree diagram ii) Trellies diagram	07
	b) What is Estimation Theory? Explain any one method in detail.	08