H-1178

Total No. of Printed Pages:03

SUBJECT CODE NO:- H-1178 FACULTY OF SCIENCE AND TECHNOLOGY T.Y. B.Tech.(CSE) (Sem V) Theory of Computation [Old]

[Time: Three Hours] [Max.Marks: 80]

Please check whether you have got the right question paper.

N.B

- i. Q. 1 & 6 are compulsory.
- ii. Solve any two question from remaining in each section.

Section A

Q.1 Solve any five

10

- a) State principle of mathematical induction
- b) Differential between mealy & moore machine
- c) If $L(r) = set\ of\ all\ strings\ over \Sigma = \{0.1\} ending\ with '011'$
- d) What is CFG?
- e) What is GNF?
- f) What are application of Regular expression?

Q.2

a) Construct DFA equivalent to given NFA

08

State		D D
$\rightarrow q_0$	$\{q_0,q_1\}$	q_0
q_1	q_2	\hat{q}_1
q_2	q_3	q_3
q_3		q_2

b) Construct a mealy machine which is equivalent to the moore machines given in table below & define mealy machine.

Present state	Next state		Output Δ
	q = 0	q = 1	
$\rightarrow q_0$	q_1	q_2	1
q_1	q_3	q_2	0
q_2	q_2	q_1	1
q_3	q_0	q_3	1

08

Q.3

a) Construct minimum state automata equivalent to given DFA.

07

b) Explain Ambiguous grammar with example.

Q.4

a) For the grammar G which is defines

08

- $S \longrightarrow aB \mid bA$
- $A \longrightarrow a \mid aS \mid bAA$
- $B \longrightarrow b \mid bS \mid aBB$

Where S as the starting symbol, write the left most & right most derivation for the string "bbaaba".

 $L = \{a^n b^m c^k / n = m \text{ or } m \le k; \ n \ge 0, m \ge 0, k \ge 0\}$

Q.5

a) Explain chowsky hierarchy in detail.

b) Find the context free grammar for following language

07

07

b) Reduce the following grammar to CNF

08

- $S \longrightarrow ASA \mid bA$
- $A \longrightarrow B \mid S$
- $B \longrightarrow C$

Section B

Q.6

Answer the following questions.

10

- a) What is Linear bounded automata
- b) What is bottom up passing?
- c) What are properties of cfc language?
- d) Define non deterministic PDA.
- e) What is Regular set?

2

Examination Nov/Dec 2019

H-1178

Q.7	a) Construct PDA equivalent to the following context free grammar. S → OBB B → OS 1S O Test whether 010000 is in language of A	08
		6,8
	b) Explain various representations of tuning machine.	07
Q.8	a) Design a Tuning machine to require all string's consisting of an even number of 1's and obtain computation sequence of '11'.	08
	b) Write short note on Recursively enumerable languages.	07
Q.9	a) Explain pumping lemma for CFL with suitable example.	07
	b) Write the PMT system 'T' for the call for medness of parenthesis to check "(()(()))"	08
Q.10	a) Explain the types of turing machine in detail.	07
	 b) Construct DFA that accepts there are regular language defined the following right linear grammar. S → bB B → bC aB b 	08