H-1211

Total No. of Printed Pages:3

SUBJECT CODE NO:- H 1211 FACULTY OF SCIENCE AND TECHNOLOGY S.Y.B.Tech. (CSE) (Sem-III) **Discrete Mathematics** [Revised]

[Time: Three Hours]

[Max.Marks: 80]

Please check whether you have got the right question paper.

N.B

- 1) Q.No.1 and Q.No.6 are compulsory.
- 2) Solve any two questions from question 2 to 5 any two questions from questions 7 to 10.

Section A

Q.1 Attempt any five: 10

- Which of these sentences are propositions? What are the truth values of those that are i) propositions?
 - a) There is no pollution in Delhi
 - b) 2 + 1 = 5
- ii) How many rows appear in a truth table for each of these compound propositions?
 - a) $(PV \sim t) \wedge (PV \sim S)$
 - b) $P \wedge \sim P$
- State the pigeonhole principle. iii)
- iv) List the ordered pairs in the relation R from $A = \{0,1,2,3,4\}$ to $B = \{0,1,2,3\}$ where $(a,b)\varepsilon R$ if and only if a>b.
- Define recurrence relation. v)
- State the equation of the linear recurrence relation with constant coefficient of order k. vi)
- a) Using mathematical induction prove that-Q.2

07

$$1.2 + 2.3 + ---- + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

- b) Among the integers 1 to 1000, how many of them are not divisible by 3, nor by 5, nor by 7. 08
- Q.3a) Find the inverse of the functions

08

- i)
- $f(x) = \frac{x+1}{x}$ $f(x) = \sqrt[3]{x-2}$ ii)
- b) Suppose that the relations R_1 and R_2 on a set A are represented by the matrices.

Examination Nov/Dec 2019

H-1211

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} and \ M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

07

What are the matrices representing

- i) $R_1 \cup R_2$
- ii) $R_1 \cap R_2$
- Q.4

Q.5

a) Find the total solution of $a_r - ga_{r-1} + 18a_{r-2} = 0$ with $a_0 = 1$, $a_1 = 4$

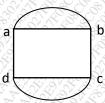
07

b) Solve $a_r - 3a_r - 1 = 2$, $r \ge 1$ with $a_0 = 1$ using generating functions.

08 07

a) Let $A = \{2,3,4,6\}$ and let aRb if a divides b. Show that R is a partial order and draw its Hasse diagram.

b) Show that $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$ are logically equivalent.


08

Section B

Q.6 Attempt any five:

10

- i) Find the value of P(8,8)
- ii) What is the expansion using binomial theorem of $(x + y)^2$
- iii) What is an algebraic system
- iv) Define monoid
- v) What is the chromatic number of Kn?
- vi) State whether the following graph is planar or not.

- Q.7
- a) Generate all the permutations of {1,2,3,4}

07

b) Suppose that repetitions are not permitted,

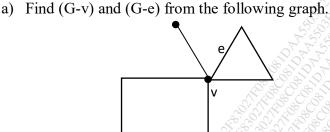
08

- i) How many 4 digit numbers can be formed from the six digits 1, 2, 3, 5, 7, 8?

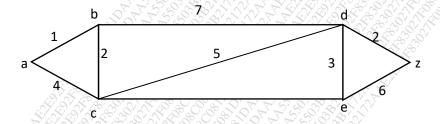
- ii) How many such numbers are less than 4000?
- iii) How many of the numbers in (i) are even?
- iv) How many of the numbers in (ii) are odd?

Q.8

- a) Find the next larger permutation in lexicographic order after each of these permutations.
 - i) 2134
 - ii) 12453
 - iii) 3142


08

H-1211


- iv) 45321
- b) Explain with example.

07

- Factors of a graph
- Complement of a graph ii)
- iii) Multi graph
- iv) Regular graph

b) Apply Dijkstra's shortest path algorithm to find the shortest path between vertices a and z in 08 the figure below.

Q.10

Q.9

a) Let (A, *) be an algebraic system such that for all $a, b \in A$

$$(a*b)*a=a$$

$$(a*b)*b=(b*a)*a$$

- Show that a * (a * b) = a * b, for all $a, b \in A$ i)
- ii) Show that a * a = (a * b) * (a * b), for all $a, b \in A$
- b) Let $(\{a, b\}, *)$ be a semi group where

$$a * a = b$$
 show that

08

i)
$$a*b=b*a$$

- i)
- b * b = bii)