FACULTY OF ENGINEERING AND TECHNOLOGY

S.E.(Mech/Prod)Examination - Dec – 2014

Strength of Materials (Revised)

[Time: THREE Hours]

[Max. Marks: 80]

"Please check whether you have got the right question paper."

N.B

Q.2

- 1)Q no 1 & Q no 6 are compulsory.
- 2) Attempt any two questions out of the remaining questions of the section A & section B each respectively.
- 3) Assume suitable data if necessary. & state it clearly.

SECTION A

Q.1 Attempt any five

10

- a) Define strength of materials.
- b) Draw stress strain curve for ductile material.
- c) State the maximum shear force induced in a cantilever of span 4m & carrying a point load of 30KN at its free end.
- d) Define beam and enlist types of beams.
- e) Enlist different types of elastic constant and define any one of them.
- f) Define shear stress & shear strain.
- g) Define thermal stress.
- h) What is lateral strain?
- i) State the relationship between young's modulus, modulus of rigidity & bulk modulus.
- a) A rigid bar ABCD is connected to steel bar at A & B and is having hinge at support 'C'. At free end a load of 40 KN is acting as shown in figure 1.

Find the forces developed in the bars and deflections of free end if $E = 2 \times 10^5 N/MM^2$, diameter of rod at A = 30mm and at B is 25mm.

b) Write a note on shear force and bending moment diagrams.

03

12

Q.5

a) Draw shear force and bending moment diagrams for the simply supported beam shown in figure 2 indicating values at salient points.

20KN/M 40KN B C D 40KN.m 3m 1m 2m 2m

b) Draw shear stress distribution diagram for T-section showing salient points.

Q.4 Derive the bending equation (flexure formula) for a beam.

- a) A steel bolt of 16mm diameter passes centrally through a copper tube of internal diameter 20mm & external diameter 30mm. The length of the whole assembly is 500mm. after tight fitting of the assembly the nut is over tightened by quarter of a turn. What are the stresses introduced in bolt & tube, if pitch of nut is 2mm. take Es=200GPa & Ec=120GPa.
- b) Draw shear force and bending moment diagrams for a simply supported beam carrying uniformly distributed load over its entire span.

SECTION B

Q.6 Attempt any five

10

12

03

15

03

05

- a) Define strain energy
- b) What are the assumptions made in theory of torsion?
- c) Write the polar modulus for circular shaft.
- d) What are the methods for finding out the slope and deflection at a section?
- e) What is the radius of the Mohr's circle?
- f) Define thin cylinder.
- g) What are the types of stresses induced in a thin cylinder subjected to internal pressure?
- h) State the equation of torsion giving meaning of each term used.
- i) State expression for power transmitted by a shaft giving meaning of each term used.
- j) Define torsional rigidity.
- a) The principle stresses at a point in a material are $90MN/M^2$ tension and 60 MN/M^2 10 compressions. Find analytically the normal and shear stresses on a plane inclined at 30^0 to the plane of greater principal stress.
- b) A solid circular shaft is subjected to a torque of 1600NM. Find the diameter of the shaft if 05 angle of twist is limited to 6^0 in a length of 3m. Take $C = 8 \times 10^5 N/MM^2$.

A thin cylindrical shell 1000mm long has 220mm external diameter. Thickness of metal is 10mm. 15 it is filled with a fluid at atmospheric pressure. If an additional $25 \times 10^3 mm^3$ of the fluid is pumped into the cylinder, find the pressure exerted by the fluid on the wall. Take $E = 2 \times 10^5 N/MM^2$ & poison's ratio=0.3. Find also the hoop stress.

- a) A simply supported beam of uniform flexural rigidity EI and span l, carries two
 symmetrically placed loads at one-Third of the span from each end. Find the expression for deflection at the middle of the span.
- b) Derive the condition for no tension for a circular column of diameter 'd'.
- a) Prove that the stress produced by suddenly applied load is twice the one produced by the same load when applied gradually.
- b) A bar, 4m long and 4cm in diameter, hangs vertically and has a collar at the lower end. 06 Find the maximum stress induced in the bar when a weight of 4.0 KN falls through a height of 10cm on the collar. Take E = 200GPa.

Q.7

Q.8

Q.9