FACULTY OF CIVIL ENGINEERING

T.E.(Civil) Examination - DEC - 2014
 Theory of Structure -II (Revised)

[Time: THREE Hours]

[Max. Marks: 80]
"Please check whether you have got the right question paper."
N.B
1). Question no, 1 from section A\& Question no, 6 from section B are compulsory. Attempt any Two questions form the remaining questions from each section
2) Assume suitable data if required and state it clearly.

SECTION A

Q. $1 \quad$ Analyze the continuous beam as shown in fig by slope deflection method. The support B and C 10 sinks 12 mm and 6 mm respectively and the support D rotates through an anticlockwise angle of 0.1 radian. There are no loads on the beam. Take E $=2^{5} \mathrm{~N} / \mathrm{min}^{2} \& I=4^{7}{ }^{7} \mathrm{xmil}^{4} 0$

Q. 2
Q. 3 Analyze the frame by column analogy method. 40KN B

Q. 4 Analyze the truss supported as shown in fig. if support B sinks by 5 mm . take $\mathrm{E}=200 \mathrm{GPa}$ and c / s area of each member $=400 \mathrm{~mm}^{2}$

Q. 5 Analyze the beam by using slope deflection method.

Q. 6 A Explain in detail from the following terms.
i) Effect of rib shortening in two hinged arch.
ii) Temp effect in two hinged arch

B State and explain the moment distribution theorem.
Q. $7 \quad$ Analyze the frame by moment distribution method. Draw BMD.

Q. $8 \quad$ Analyze the portal frame by Kanis method.

Q. $9 \quad$ A two hinged parabolic arch of span 50 m and rise 5 m is subjected to a central concentrated load of 1 60 kN . It has an elastic support which yields by $0.0001 \mathrm{~mm} / \mathrm{KN}$. Take $E \underset{\mathrm{~m}^{2}}{200 K N}, I=5{ }^{9}$ xnmily average area $\mathrm{Am}=10000 \mathrm{~mm}^{2} \alpha=10 \mathrm{Z}^{-6} / /^{0} \mathrm{C}$. 0 And assuming secant variation calculates the horizontal thrust developed when the temp rises by $20^{\circ} \mathrm{C}$.
i) Neglecting rib shortening
ii) Considering rib shortening
Q. $10 \quad$ A continuous beam as shown in fig. if support B is sinks by 10 mm , analyze the beam by moment 15 distribution method \& draw BMD. If $E=2.1{ }^{5} \times N / \mathcal{H E O}^{2} \& I=85{ }^{5} \mathrm{xmm}^{4} 0$

